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Abstract 30 

Our growing human population will be increasingly dependent on bees and other pollinators that 31 

provide the essential delivery of pollen to crop flowers during bloom. Within the context of 32 

challenges to crop pollinators and crop production, farm managers require strategies that can reliably 33 

provide sufficient pollination to ensure maximum economic return from their pollinator-dependent 34 

crops. There are unexploited opportunities to increase yields by managing insect pollination, 35 

especially for crops that are dependent on insect pollination for fruit set. We introduce the concept of 36 

Integrated Crop Pollination as a unifying theme under which various strategies supporting crop 37 

pollination can be developed, coordinated, and delivered to growers and their advisors. We emphasize 38 

combining tactics that are appropriate for the crop’s dependence on insect-mediated pollination, 39 

including the use of wild and managed bee species, and enhancing the farm environment for these 40 

insects through directed habitat management and pesticide stewardship. This should be done within 41 

the economic constraints of the specific farm situation, and so we highlight the need for flexible 42 

strategies that can help growers make economically-based ICP decisions using support tools that 43 

consider crop value, yield benefits from adoption of ICP components, and the cost of the practices. 44 

Finally, education and technology transfer programs will be essential for helping land managers 45 

decide on the most efficient way to apply ICP to their unique situations. Building on experiences in 46 

North America and beyond, we aim to provide a broad framework for how crop pollination can help 47 

secure future food production and support society’s increasing need for nutritious diets. 48 

 49 

Keywords: bee, food, sustainability, crop, biodiversity, management 50 

 51 

Introduction 52 

As production of crops requiring insect-mediated pollination increases globally, there is a greater 53 

demand for crop-pollinating bees (Aizen & Harder 2009). Bees pollinate most of the fruit, vegetable 54 

and nut crops that enrich the diets of a growing human population by providing essential nutrients that 55 

complement dietary staples (Eilers et al. 2011) and mitigate nutrient deficiencies (Chaplin-Kramer et 56 

al. 2014, Ellis et al. 2015). Given these trends, present and future demands compel the development of 57 
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effective pollination strategies that employ appropriate bee species in efficient ways. To help address 58 

this challenge, we introduce the concept of Integrated Crop Pollination. We discuss how it might be 59 

implemented to help ensure the long-term stability of crop pollination, which is an essential 60 

component of sustainable and profitable production of many of our most nutritious crops.  61 

The western honey bee (Apis mellifera L., Hymenoptera: Apidae) is an effective pollinator of 62 

many crops (Delaplane & Mayer 2000), but they are not always the most effective, and there is 63 

increasing recognition of the contributions of unmanaged populations of native bees (Winfree et al. 64 

2011, Garibaldi et al. 2013) and other insects (Rader et al. 2016). A small number of bee species 65 

exhibit characteristics that lend them to management for use as crop pollinators (Torchio 1990, Mader 66 

et al. 2010), thereby offering alternatives for some crops or as complementary pollinators to honey 67 

bees. These different sources of insect-mediated pollination provide opportunities to integrate wild 68 

and managed pollinators to help ensure stable and sustainable crop pollination (Kevan et al. 1990; 69 

Williams et al. in press). However, growers and land managers have access to limited information for 70 

making practical decisions on the most effective and efficient strategies to support wild and managed 71 

pollinators for their crop pollination needs. Additionally, these decisions must be made within the 72 

context of the local or regional farm system, its existing pollination system, pest management 73 

intensity, economic resources, and the available bee species that are practicable to align with and 74 

integrate into the crop production system. Given the complexity of crop pollination, decision-support 75 

systems are needed for growers and other land managers to help ensure reliable pollination for stable 76 

and profitable crop production.  77 

 78 

Integrated Crop Pollination 79 

As an organizing concept to structure the development and evaluation of efficient and flexible 80 

pollination strategies, we introduce the concept of Integrated Crop Pollination (ICP). We define ICP 81 

as: The use of managed pollinator species in combination with farm management practices that 82 

support, augment, and protect pollinator populations to provide reliable and economical pollination 83 

of crops (Fig. 1). This concept includes the expectation that no single strategy will be the best option 84 

for all locations where a crop is grown, due to variation in the level of pollinator dependence, the 85 
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managed and wild bee populations, crop variety, local economics of production, horticultural 86 

practices and personal preference. The approach builds on a strong foundation of research and 87 

implementation, ensuring the delivery of practical options aligned for diverse farming contexts.  88 

Lack of comparisons between pollination strategies using a return-on-investment analysis 89 

approach inhibits growers ability to consider the relative benefits of honey bees and complementary 90 

of alternative strategies. By embracing the diversity of tactics that can be applied to specific farm 91 

situations, ICP provides a framework to guide the designing, development, and testing of multiple 92 

pollination strategies, including correlating their benefit to farm revenues. In many ways this approach 93 

echoes the development of Integrated Pest Management (IPM) 50 years ago, which brought a formal, 94 

quantitative approach to the interactions between pests, crops, and farm revenues (Kogan 1998). Here, 95 

we outline the key principles on which an ICP strategy can be developed, describe its primary 96 

components (Fig. 1), and discuss applied research needed to transition from concept to useful 97 

structure for decision-making by managers of specialty crops.  98 

 99 

Integration of pollinators on farms 100 

Managing crop pollination from an ICP perspective includes the integration and diversification of 101 

pollinators and will require balancing the pros and cons of using a single managed bee species such as 102 

the honey bee, mixtures of managed species, and/or wild bee pollinators. Although non-bee 103 

pollinators can be important in some contexts (Rader et al. 2015), for the purposes of this review they 104 

are not considered. The ICP framework (Fig. 1) recognizes the essential role of honey bees as 105 

specialty crop pollinators. In some situations, increasing stocking density can be the most effective 106 

and economical option for achieving the desired pollination goals with the greatest return on 107 

investment. In others, combining honey bees with other pollinating insects can improve pollination 108 

(Brittain et al. 2013a) and may reduce the risk of poor yields caused by annual variability in pollinator 109 

activity. We assume that the context under which alternative pollinators are likely to be most effective 110 

and economically practical is dictated by a combination of factors including the landscape 111 

surrounding the farm, how the farm is managed, the reproductive biology and phenology of the crops, 112 

and the relative efficacy and cost of different managed bee species. Each farmer will have a specific 113 
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set of pollination options available that can be selected and integrated into their farming practices to 114 

provide for their pollination needs (Fig. 2), and so we recognize the challenge of developing specific 115 

recommendations when each farm setting is different. However, our broad view provides a structure 116 

for considering integration of pollinators into farm systems and exploring where this effort may be 117 

worthwhile. We begin by discussing alternative managed bees and wild bees, then consider 118 

management strategies for integrating them into crop production. 119 

 120 

Managed honey bees  121 

Honey bees are the dominant managed pollinator across the globe (De-Grandi Hoffman 2003). They 122 

are well suited for agricultural pollination because they forage on a wide range of flowering plant 123 

species, have large colonies with abundant workers, have a long history of management, and are 124 

relatively low cost for growers to rent them (Free 1993; Delaplane & Mayer 2000; Allsopp et al. 125 

2008). From the small hobbyist to the professional commercial operator, beekeepers provide millions 126 

of colonies to support crop pollination (Potts et al. 2010, Calderone 2012), despite growing challenges 127 

to this industry. While they may be available in much greater abundance, honey bees are less efficient 128 

pollinators of some pollinator-dependent crops than other bee species (Thomson & Goodell 2001, 129 

Cane 2002, Artz & Nault 2011, Shipp et al. 1994, Stubbs & Drummond 2001, Desjardins et al. 2006, 130 

Dogterom et al. 2008, Garibaldi et al. 2013). Because other bees may be more efficient pollinators of 131 

crops, there has been long-standing interest in expanding the suite of managed bee species that can 132 

provide crop pollination (Bohart 1972, McGregor 1976, Free 1993, Strickler & Cane 2003, Peterson 133 

& Artz 2014). Alternative managed bees and wild bees may also address the pollination shortages 134 

suggested by the more rapid expansion of the area planted to pollinator-dependent crops than 135 

populations of managed honey bees (Aizen & Harder 2009). Despite their decades of use as crop 136 

pollinators, we know relatively little about the investment-response relationship for honey bee 137 

colonies in most crops. General guidelines are available and are based on older studies (Delaplane & 138 

Mayer 2000). However, there is an urgent need for research to explore optimal stocking rates and 139 

deployment patterns of honey bee colonies (e.g. Cunningham et al. 2015) as well as to understand 140 

yield responses in different farm settings (Gaines-Day & Gratton 2016) given the loss of feral honey 141 
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bees in many regions and updated crop production practices that create higher bloom densities and 142 

introduce new cultivars.     143 

 144 

Alternative managed bees 145 

Of the approximately 4,900 bee species in North America (Michener et al. 1994), one bumble bee 146 

species and three solitary bee species have management protocols fully or nearly complete to support 147 

their use on a commercial scale (Kevan et al. 1990, Velthuis & van Doorn 2006, Pitts-Singer & James 148 

2008, Peterson & Artz 2014), with similar low proportions of the bee fauna domesticated globally. 149 

The details of management approaches for these bees have been reviewed elsewhere (Mader et al. 150 

2010, Delaplane & Mayer 2000), so here we consider specific points that pertain to integrated 151 

pollination. The value of bumble bee pollination in greenhouses is widely acknowledged (e.g., Shipp 152 

et al. 1994, Dogterom et al. 2008, Guerra-Sanz 2008), but in open field settings Bombus impatiens can 153 

also be an effective alternative to honey bees for lowbush blueberry (Desjardins & Oliviera 2006) and 154 

watermelon (Stanghellini & Ambrose 1998). Recent studies suggest their benefit is context 155 

dependent. In pumpkin fields stocked with either A. mellifera or B. impatiens, the landscapes 156 

surrounding fields moderated the benefit of supplemental pollination inputs (Petersen & Nault 2014), 157 

with the high background density of wild bumble bee colonies and other wild bees masking 158 

contributions by the purchased colonies. In other settings with a paucity of wild pollinators, the 159 

addition of commercial bumble bee colonies may be an effective strategy for pollination of pumpkin 160 

and other cucurbits.  161 

Three species of solitary bees have been propagated and employed as pollinators of certain 162 

target crops. The cavity-nesting alfalfa leaf-cutting bee, Megachile rotundata, is widely adopted in 163 

North American alfalfa-seed producing regions as the primary pollinator for obtaining profitable seed 164 

yields. The ground-nesting alkali bee, Nomia melanderi, is managed for alfalfa pollination in 165 

Washington, where long sustained natural bee beds and some man-made ones can persist in well-166 

suited soils under an amenable climate (Pitts-Singer & James 2008). Osmia lignaria, the blue orchard 167 

bee, is increasing being used for pollination of tree fruit and nut crops. Previously only considered for 168 

small-scale or organic orchards (Bosch et al. 2000, 2006), it recently has been combined with honey 169 
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bees in large commercial orchards for pollination and propagation (Artz et al. 2014, Boyle and Pitts-170 

Singer 2017). More information on the pollination potential, economics of management, and optimal 171 

use in various commercial field settings is needed to fully incorporate alternative managed bees into 172 

effective ICP systems. As an example, Table 1 highlights aspects to consider for the use of honey bees 173 

and blue orchard bees for crop pollination. 174 

The value, benefits, and feasibility of using alternative managed bees as part of crop 175 

production strategies requires that their life cycles and nesting activities be considered along with 176 

their necessary management practices. For example, commercial bumble bee colonies can be 177 

purchased year-round and reared to have peak worker abundance to match the bloom timing of crops. 178 

These are also transportable and can be used on more than one crop per year, if colonies are kept 179 

healthy. With evidence of declines in some wild bumble bee species that are linked to increased 180 

pathogen loads (e.g. Nosema bombi) that may have been amplified or introduced from commercially 181 

reared colonies (Cameron et al. 2016), strategies for eliminating disease in commercial bumble bees 182 

will be a critical component of an effective ICP system that includes managed and wild bumble bees. 183 

In part to curtail the risk of disease spread or other negative ecological interspecific interactions 184 

(Graystock et al. 2016), some limitations are placed on moving bumble bee species beyond their 185 

native ranges for pollination outside of greenhouses, and producers are increasingly adopting 186 

pathogen screening (Huang et al. 2015).     187 

Unlike honey bees and bumble bees, blue orchard bees have a solitary life history. They 188 

overwinter as cocooned adults and are ready to emerge ready to visit early spring flowers such as fruit 189 

trees, even when the weather is cool and damp. Nesting females live for about six weeks, and progeny 190 

remain in the nest for a full year before new adults emerge. Therefore, management protocols for bee 191 

storage using prescribed temperature regimes have been developed to ensure that adults emerge 192 

quickly and synchronously with crop bloom (Bosch et al. 2008). Because the blue orchard bee is a 193 

promising commercial pollinator (e.g., Bosch & Kemp 2002), systems for managing this species are 194 

being developed, including improvements in nesting materials and distribution of nest sites to 195 

maximize crop pollination and bee reproduction (Peterson & Artz 2014). The largest supply of bees 196 

comes from trapping in wild lands, which is not annually reliable, cost effective, or sustainable and 197 
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differences in bee phenology by geographic source can cause management problems if trapped bees 198 

are sold for use to localities with mismatched climatic conditions (Pitts-Singer et al. 2014). Locally 199 

sourced bees and methods for their reproduction are major research priorities for the blue orchard bee 200 

industry.   201 

Safeguarding all bees from pesticide impacts is paramount. For solitary bees, however, the 202 

incidental or accidental killing of foraging females terminates reproduction. Bee safety during crop 203 

bloom must be ensured through the limited or timely use of crop-protecting pesticides. Also, efforts 204 

are needed to protect bee population from arthropod natural enemies and vertebrate predators. The 205 

economic implications of using commercial bumble bee colonies or solitary bees as sole pollinators or 206 

in combination with honey bees have not yet been determined in most settings, yet this is a critical 207 

component for understanding how to integrate multiple bee species for pollination. Ultimately, the 208 

costs of each type of bee must be compared in the context of relative yield increases and per-acre 209 

revenues to understand the conditions under which combined strategies will be economically 210 

beneficial to growers. 211 

 212 

Wild bees  213 

Depending on the farm situation, wild bee populations can provide none, some, or all of the 214 

pollination needs of crop plants. The contribution of each species depends on its abundance, 215 

efficiency, fidelity, compatibility for pollinating the specific flower type, and flight range (Torchio 216 

1990, Tepedino 1981, Thomson & Goodell 2001, Greenleaf et al. 2007). By taking these factors into 217 

account, programs to preserve, enhance or create farm landscapes to support bee populations will be 218 

more likely to deliver ecosystem services that secure or improve agricultural outputs (Kennedy et al. 219 

2013, Garibaldi et al. 2014). Successful ICP must begin with assessing the role of different pollinators 220 

and how their contributions vary with farming context, crop type, and region. Having identified which 221 

species are effective at delivering conspecific pollen (Sampson and Cane 2000), the next step is to 222 

collect ecological and biological information about these species to identify factors that may boost 223 

their population growth and abundance, e.g., via enhanced availability and seasonal continuity of nest 224 

and flower resources (Schellhorn et al. 2015). Based on this information, the location and type of 225 
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management intervention can be developed to improve pollination, with decisions rooted in economic 226 

analysis of the costs and returns of different strategies.  227 

 228 

Diversity and pollination functioning 229 

Promotion of bee diversity and multi-species integration at different spatial and temporal scales is 230 

expected to reduce the risk of pollination shortfalls (Kennedy et al. 2013), especially in years when 231 

weather conditions are less suitable for honey bee flight. A meta-analysis by Garibaldi et al. (2013) 232 

found that fruit set of many crops was positively correlated with wild bee visitation to flowers, but 233 

there are few long-term studies to determine how bee diversity buffers crop pollination against 234 

variable weather conditions.  235 

Higher bee diversity is expected to increase the annual stability of crop pollination (Garibaldi 236 

et al. 2011). Given natural variability in wild bee populations from year to year (Williams et al. 2001), 237 

species diversity is expected to buffer pollination to the inter-annual fluctuations in abundance 238 

(Kremen et al. 2002). For example, mason bees will fly at cooler temperatures in spring orchards than 239 

will honey bees (Vicens & Bosch 2000), which should allow for pollination under conditions typically 240 

considered unsuitable for pollination by honey bees (Brittain et al 2013b). Whether this will lead to 241 

higher crop pollination remains unclear (Tuell & Isaacs 2010).  242 

Bee species differ in their behavior on flowers (Chagnon et al. 1993), movement within crops 243 

(Heohn et al. 2008, Brittain et al. 2013b), and temporal pattern of visitation within single days and 244 

over the season (Tepedino 1981, Hoehn et al. 2008). The levels of pollination achieved through 245 

functional complementarity and facilitation among species can be enhanced by diversifying such 246 

functional groups of bees that pollinate crops (Gagic et al. 2015). Where there are multiple plantings 247 

of annual crops within a season, such as found in many diversified vegetable farms, seasonal crop 248 

diversity can support more diverse bee populations that can contribute to sustained pollination and 249 

thus higher annual yield. The importance of this complementarity will be augmented in polyculture 250 

systems where different bee species prefer different crops or are more effective pollinators of certain 251 

crops (e.g., Thomson & Goodell 2001, Javorek et al. 2002, Greenleaf et al. 2006). By implementing 252 

tactics to enhance bee diversity on farms, growers will increase the chance that high functioning 253 
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species are present within the community of bees visiting their flowers during bloom (Kleijn et al. 254 

2015).  255 

Diversification of the bee community available to visit flowers during crop bloom also 256 

enables pollination synergies through facilitation among bee species. For example, the presence of 257 

wild bees in orchards and on row crops increases the pollination effectiveness of honey bees, such that 258 

each honey bee visit on average leads to better yield (DeGrandi-Hoffman & Watkins 2000, Greenleaf 259 

& Kremen 2006, Brittain et al. 2013a). The same effect can be achieved using combinations of 260 

managed species such as honey bees and Osmia species in almonds (Brittain et al. 2013a), and there is 261 

much yet to learn about how combinations of pollinators interact in different crops.  262 

There is growing evidence for diversity of response among bee species to landscape change 263 

and other disturbances, including agriculture (Winfree & Kremen 2009, Carre et al. 2009, Cariveau et 264 

al. 2013). The ability to predict bee diversity in different farm landscapes can inform pollinator 265 

integration strategies, and we envision combining the model developed by Lonsdorf et al. (2009) and 266 

tested widely by Kennedy et al. (2013) into online mapping tools to support decisions on where to 267 

locate plantings to conserve bees on farms. Including an economic component will be critical for 268 

selecting locations providing positive revenue changes in nearby crops (Williams et al. in press).  269 

 270 

Understanding the context of diversification and integration 271 

Incorporating wild bees as part of an ICP strategy may lead to more sustainable agriculture region-272 

wide. On the majority of small vegetable farms in the Mid-Atlantic region of the United States, wild 273 

bees alone provide sufficient pollination to some vegetable crops (Winfree et al. 2007). In this 274 

situation, maintaining habitat plantings for wild bees located near farms might be all that is needed to 275 

ensure pollination into the future. These are areas of vegetation that are rich in flowering plant 276 

resources, and they may be linear strips such as hedgerows or larger areas consisting of annual cover 277 

crops or diverse perennial plant communities. In farms with larger field sizes, managed bee 278 

integration may be needed because wild bees are too scarce to service the high density and abundance 279 

of flowers produced during crop bloom. Recognizing where different pollination strategies are most 280 

effective is critical to effective ICP.  281 
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The context under which pollination by alternative managed bees or wild bees is likely to be 282 

most effective and economical is dictated by regional land use, farm management, reproductive 283 

biology and bloom timing of the cultivated crop, and the relative cost of different bees (Fig. 2). 284 

Careful consideration of when integration of wild and managed bees is most likely to be functionally 285 

important can also reveal where and how changes to management practices (such as habitat 286 

enhancement to promote pollinator populations) can promote cost-effective ICP (Kleijn et al. 2011).  287 

Intensively managed landscapes with large crop fields present greater challenges for the 288 

integration of wild bees for pollination (Fig. 2, right). Such landscapes offer fewer forage and nesting 289 

resources for wild bee populations outside of mass-flowering crops (Holzschuh et al. 2013, Jauker 290 

2012) and, thus, support lower bee diversity overall. Where a mass-flowering crop is the desired 291 

target of pollination, large field sizes and locally intensive monoculture pose additional challenges 292 

(Isaacs & Kirk 2010), because of the high number of flowers and the low density of wild bees.  293 

Moreover, larger fields have interiors further from non-crop habitat that supports bees. Unless 294 

pollinator habitat can be interspersed throughout the fields and bees protected from exposure to bee-295 

toxic pesticides, they will be more dependent on managed pollinators (Garibaldi et al. 2011).  296 

 297 

Integration of practices on farms 298 

Sustainable pollination using managed or wild bees requires that their populations persist over time on 299 

the farm or in surrounding landscapes (Kremen et al. 2007, Brosi et al. 2008). In general, the 300 

abundance of bees is governed by the availability and temporal continuity of resources required for 301 

the organism to complete its life cycle (e.g. nest site and material, food, mates, refuge) (Schellhorn et 302 

al. 2015), and by mortality or reduced fecundity caused by parasites, disease, predation and toxins 303 

(Cavigle et al. 2016, Cameron et al. 2015). These interactions are modified by the environment, where 304 

the main drivers are soil, climate, and nutrient availability. Bees need nesting and floral resources to 305 

persist, and these should be available throughout their flight seasons and also reliably present from 306 

year-to-year, whether as natural resources or constructed shelters.  307 

Many farms are relatively devoid of floral resources for bees before and after crop bloom and 308 

beyond the growing season (Williams et al. 2012, but see Winfree et al. 2009), and intensive 309 
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management also tends to remove key nesting substrates and overwintering sites for some bees 310 

(Forrest et al. 2015). However, there is still opportunity to apply the ICP approach in these settings. 311 

The extreme example of California almond orchards provides unique challenges for enhancing 312 

pollination services (Kremen et al. 2007), but also some lessons on what it will take to reduce 313 

dependence on honey bees. Many almond orchards are cultivated as large blocks of over 100 acres 314 

within simplified landscapes, and have very high blossom density in mid to late February when 315 

weather is unpredictable for insect flight. Wild bee populations by themselves are unlikely to yield 316 

high returns in this context because their already small population sizes are affected negatively by 317 

intensification and they cannot penetrate the large orchards. In contrast, smaller orchards or those in 318 

landscapes where native vegetation is near, receive substantial visitation by wild bees (Klein et al. 319 

2012). In this setting, managed blue orchard bees, Osmia lignaria, can support honey bee-dominated 320 

pollination (Brittain et al. 2013a) such that the integrated strategy of combining managed species 321 

offers synergistic benefits for yield. Additionally, wildflower plantings near these orchards can 322 

improve the reproduction of Osmia bees without competing with the crop for pollinators (Lundin et 323 

al. 2017). Smaller almond orchards and those with later blooming varieties might benefit more from 324 

habitat that augments managed O. lignaria and wild bee populations. 325 

 326 

Habitat enhancements 327 

When landscape-scale management for wild bees is beyond the control of individual farmers, they can 328 

work collectively to maintain habitat that will support bees that is already present in the surrounding 329 

landscape. Coordinated regional programs should be considered for enhancing habitat across a scale 330 

that will support wild bee populations. However, local scale management can also affect their 331 

abundance and mitigate the negative effects of intensively managed landscapes (Rundlöf et al. 2008, 332 

Kennedy et al. 2013). Installing pollinator habitat to provide diverse flowering species on or adjacent 333 

to farms can attract and support wild bees (Carvell et al. 2007, Garibaldi et al. 2014, Williams et al. 334 

2015) that may then enhance the delivery of pollination to adjacent crops (Carvaleiro et al. 2012, 335 

Blaauw & Isaacs 2014, Venturini et al. 2017). These same plants can attract many bee species that 336 

pollinate crops including honey bees (Williams et al. 2015), and provide them with a diversified 337 
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pollen diet. When subjected to stressors such as pathogens, parasites, pesticides, unfavorable weather 338 

or any of their combinations, access to diverse pollen may provide nutritional benefits that influence 339 

the health of bees (e.g., Di Pasquale et al. 2013, Wheeler & Robinson 2014).  If farmers can find the 340 

space for bee plantings or preserve existing resources, their efforts allow for great potential to increase 341 

sustainability of crop pollination into the future. Such habitat can occupy locations not suitable for 342 

crop production (marginal land) or along field margins, roadsides, irrigation canals, etc. However, if 343 

the benefit to crop yield is great enough, it may be possible to create bee habitat ‘islands’ or corridors 344 

within farms (Brosi et al. 2008, Carvalhiero et al. 2012) to ensure the presence of wild bee 345 

populations and nutritional diversity for all bees, including honey bees, during crop bloom. 346 

Establishment of habitat for pollinators must balance multiple goals: enhance pollination and 347 

other services, minimize disservices such as supporting pest populations or attracting bees away from 348 

the target crops (but see Lundin et al. 2017), and maximize cost effectiveness. A key element of ICP 349 

is to develop a robust and flexible framework for guiding pollinator habitat from plant selection, to 350 

establishment, to streamlined assessment of function (Fig. 3). Careful selection of regionally-adapted 351 

plant species and a robust methodology for establishing plantings is critical to successful functioning. 352 

Plant mixes that bloom over the entire growing season will support a greater diversity of bee species 353 

and may benefit crops that bloom at different times of year, but targeted strategies that provide 354 

resources for particular bee species also can be designed to support specific pollinators while not 355 

supporting pests. Extended flowering promotes pollinator species whose flight periods extend beyond 356 

that of a single crop. For example, this is critical for support of bumble bee species whose queens and 357 

workers pollinate blueberry during May and June, but whose colonies grow through the summer 358 

(Blaauw & Isaacs 2014). These same habitats can also support large numbers of honey bees (Williams 359 

et al. 2015; Lundin et al. 2017) and could offset nutritional needs that currently are only partially met 360 

by feeding colonies with artificial nutritional supplements.  361 

The addition of habitat for bees by growing areas of flowering plants within farmscapes 362 

represents only one option to diversify farming in order to support crop pollinators. The crop itself can 363 

provide vital resources to bees. In particular, adding mass-flowering crops to current, often short, crop 364 

rotations can enhance bee populations (Bennett et al. 2012). Bumble bees can build large colonies by 365 



14 

 

summer, and their populations benefit from large coverage of mass-flowering crops in farm 366 

landscapes (Westphal et al. 2003). The timing and continuity of crop and non-crop bloom across the 367 

season is critical for colony performance, and studies in separate regions have shown that while early 368 

season resources led to increased production of workers, these did not consistently lead to higher 369 

queen production (Westphal et al. 2009, Williams et al. 2012, Persson & Smith 2013). Late-season 370 

flowering crops can release an apparent resource bottle neck and enhance production of reproductive 371 

bumble bees, but not workers (Rundlöf et al. 2014). These results suggest the importance of 372 

continuity of flower resources throughout the all phases of the colony cycle (Crone & Williams 2016). 373 

Other bee species that pollinate crops (such as megachilid and halictid bees) may be active during a 374 

shorter period of the growing season. To support them, adding flowers to the landscape has to be 375 

timed correctly (Russo et al. 2013). More research is needed to link the phenology of flowering crops 376 

in the landscape to communities of beneficial arthropods to identify which measures are likely to be 377 

efficient for specific bee species (Vasseur et al. 2013, Sardinas et al. 2016). 378 

 379 

Horticultural practices  380 

A comprehensive review by Klein et al. (2007) discovered a lack of information on the dependency of 381 

yield on insect pollination in many crops, especially those partially dependent on animal-mediated 382 

pollen transfer. This baseline information is critical for calculating the economics of ICP, both for the 383 

crop grower and for the manager of bees. Recently, the benefits of insect pollination for both yield 384 

and quality have been determined in major crops for which pollination, in many cases, has not been 385 

considered a key production factor (e.g., Cunningham & Le Feuvre 2013, Bartomeus et al. 2015, 386 

Lindström et al. 2016).  387 

Many factors play a role in estimating the benefits of insect pollination, such as the 388 

interactions of nutrient, water and plant protection (Bos et al. 2007). For instance, water availability 389 

modifies the benefit of insect pollination for almond yield such that drought reduces yield more in 390 

fully than in poorly pollinated plants (Klein et al. 2015). Increased nitrogen reduces the benefit of 391 

pollination in oilseed rape, but pollination can recoup seed yields when little nitrogen is available, 392 

apparently increasing nutrient use efficiency (Marini et al. 2015). For seed production in red clover, 393 
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pollination benefits increased synergistically with increased control of a pest insect (Lundin et al.  394 

2013). Managing for enhanced soil organic matter can increase yield benefits from pollination in 395 

sunflower (Tamburini et al. 2016), and soil properties and pests interact with pollination in shaping 396 

yield in oilseed rape (Bartomeus et al. 2015, van Gils et al. 2016) and field beans (St-Martin & 397 

Bommarco, in final revision). These examples clearly show that pollination benefits often interact 398 

with, rather than simply add to, other resources in their relative contribution to crop yield (Seppelt et 399 

al. 2011).  400 

A major knowledge gap is the lack of understanding of differences in pollination dependency 401 

among crop cultivars (Klein et al. 2007). Crop breeding programs rarely consider how pollination 402 

benefits vary among cultivars, or the level of pollen or nectar reward for bees. Oilseed rape has been 403 

well studied for this aspect, and screening demonstrates clear variation in benefits of cross-pollination 404 

(Hudewenz et al. 2013). Such large differences have been confirmed in field experiments where the 405 

most pollination dependent cultivars also gave the highest overall yields when pollinated (Lindström 406 

et al. 2016, Marini et al. 2015). New cultivars should be tested with self- and out-cross pollen as well 407 

as with locally-relevant bee communities during development in breeding programs. One option in 408 

response to declining bee availability from an agronomic perspective is to breed for less pollinator 409 

dependence. In almond for which pollen from a different variety (i.e., from a “pollinizer”) is needed 410 

for cross-pollination of the target variety, there is keen interest in developing self-compatible cultivars 411 

that do not require such cross pollination (e.g. Holland et al. 2016). This would reduce the bee 412 

densities required to achieve complete pollination, and would result in single-variety harvest with the 413 

associated management efficiencies. Such benefits must be balanced against potential impacts on 414 

fruit/nut quality. 415 

 416 

Pesticide stewardship 417 

Growers apply pesticides (principally fungicides, herbicides, and insecticides) on/around crops to 418 

combat the many pests and diseases that threaten crop production and plant health. Such chemicals, 419 

particularly insecticides targeting crop pests, unsurprisingly can expose and harm the bees on which 420 

crop production depends (Johnson 2015). An effective ICP strategy will account for pesticide use and 421 
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the potential for exposure to bees during crop bloom and at other times of the season. A framework 422 

for approaching such considerations is well-established already through Integrated Pest Management 423 

(Radcliffe et al. 2009). Indeed, the framework is designed to reduce unnecessary pesticide application, 424 

pesticide drift and environmental impact where decisions are explicitly based within an economic 425 

context. IPM can be adapted to include additional goals such as avoiding impacts to bees (Biddinger 426 

& Rajotte 2015).  427 

Pesticide risk assessments for bees are derived largely from studies of honey bees, performed 428 

in few (mainly annual) crops, concentrated in North America and Europe (Lundin et al. 2015). 429 

Regulatory agencies require that plant protection products be tested for their effects on honey bees 430 

prior to registration under the presumption, albeit sometimes false, that other bee responses to 431 

pesticide exposure would be similar to those identified for honey bees (Thompson & Hunt 1999, 432 

Tasei 2002, Reidl et al. 2006, Biddinger et al. 2013). Regulatory agencies are reviewing their reliance 433 

on honey bee LD50 values as the primary basis of potential restrictions on pesticide use during crop 434 

bloom, and are developing protocols for greater inclusion of larval tests and sub-lethal effects within 435 

future regulatory frameworks (Fischer & Moriarty 2014, Environmental Protection Agency 2014, 436 

European Food Safety Authority 2014).  437 

Pesticides can affect bees through multiple routes of exposure (Thompson 2012, Johnson 438 

2015) and combinations can cause greater effects than individual exposures (Gill et al. 2012). 439 

Although growers avoid directly spraying pollinators, pesticides may contact bees when they are 440 

applied to blooming flowers. Pesticides also can drift to non-target sites if application parameters are 441 

not ideal, such as in windy conditions or when a blooming non-target crop is sprayed inadvertently 442 

because it is adjacent the target crop being treated. Bees may consume pesticides in pollen and nectar 443 

that exists either as surface residue or one that has moved systemically within the plant. Certain bees 444 

have additional routes of exposure that are less likely for other bee species. For example, honey bees 445 

may collect contaminated water to cool the nest and brood, and some solitary bees cut leaf pieces or 446 

gather moist soil for nest-building. Finally, foraging bees can bring sub-lethal doses of insecticides to 447 

their hive or nest, contaminating larval food and exposing other life-stages to pesticides.  448 
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Insecticides applied to crops that are not in bloom also have the potential to affect bees that 449 

contribute to crop pollination, but which remain active later in the growing season. Many pesticides 450 

have been detected on native bee species in agricultural landscapes (Hladik et al. 2016), although the 451 

effects of insect pest control programs on bees are variable among years and species (Tuell & Isaacs 452 

2010; Rundlöf et al. 2015). There is mounting concern about the effects of systemic insecticides on 453 

bees and other non-target insects (Goulson 2013), and the development of ICP guidelines requires a 454 

broad view of how typical pest management programs can affect the economically-important 455 

pollinator within each region and crop. With this information, growers can make informed pest 456 

management decisions based on each pesticide’s potential both to control the target pest and to affect 457 

bees and the pollination services they deliver. Recently, this approach has been termed Integrated Pest 458 

and Pollinator Management (Biddinger & Rajotte 2015).  459 

 460 

International attention to Integrated Crop Pollination 461 

The development of comprehensive ICP practices is a challenging task, but there are efforts underway 462 

across the globe in this direction. Examples include the International Pollinator Initiative 463 

(www.internationalpollinatorsinitiative.org) led by the Food and Agriculture Organization and recent 464 

efforts by the International Program on Biodiversity and Ecosystem Services to synthesize current 465 

understanding and to set international policy needs (www.ipbes.net/publication/thematic-assessment-466 

pollinators-pollination-and-food-production). In Europe, members of the EU-funded Status and 467 

Trends of European Pollinators project (www.step-project.net/) have investigated pollinating insects 468 

and pollen limitation in numerous crop systems, while also exploring potential interventions to 469 

improve pollination and modeling implications of climate change on these interactions. More 470 

recently, the SuperB project (www.superb-project.eu/ ) has been developed to focus on conservation 471 

and sustainable management of ecosystem services mediated by pollinators, and the LIBERATION 472 

Project is looking broadly at ecosystem services to European agriculture (www.fp7liberation.eu). In 473 

North America, members of projects in Canada and the United States also are investigating crop 474 

pollination. The CANPOLIN project (www.uoguelph.ca/canpolin/) has been identifying key 475 

pollinators of major crop systems and in natural habitats. Members of project ICP based in the United 476 

http://www.internationalpollinatorsinitiative.org/
http://www.step-project.net/
http://www.superb-project.eu/
http://www.fp7liberation.eu/
http://www.uoguelph.ca/canpolin/
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States (www.projecticp.org) are working to identify the most economically important pollinators in 477 

various fruit, nut, and vegetable crops, determine the factors driving their abundance on farms, and 478 

then evaluate habitat manipulation and alternative pollinators as potential mitigation strategies. 479 

Together these projects will advance our knowledge of crop pollination in modern agricultural 480 

systems and will contribute new insights that can support policies to safeguard pollination services 481 

(Dicks et al. 2016). 482 

 483 

Delivery of ICP programs for farmers, extension educators, and farm advisors 484 

Honey bee knowledge and extension information are currently integrated into most land grant 485 

university programs across the United States, and there is a wealth of experience and knowledge in 486 

the honey bee keeping community. Such compiled information is much less available and is less well 487 

developed for other managed bee species, and in many cases there are important parameters of their 488 

management that are not yet understood. Education on wild bee biology and management is starting 489 

to increase in university programs, which will help support long-term implementation of ICP and was 490 

one of the priority policy changes recommended by Dicks et al. (2016). If alternative managed bees 491 

become more cost effective and their return on investment can be better documented, perhaps a larger 492 

scale industry for rearing, managing, and deploying these bees can be developed to support ICP. 493 

Progress is being made towards this goal supported by major investments, including the development 494 

of western bumble bee species for commercial pollination and the propagation and management of 495 

blue orchard bees.  496 

For growers making decisions about their relative levels of investment in different managed 497 

and wild bees versus the other potential components of their crop pollination system, the relationships 498 

between bees, costs, yield increases, and improved revenue are needed. Even the recommendations 499 

for appropriate stocking densities of honey bees are based on old studies with out-of-date cultivars in 500 

many crops (Free 1993, Delaplane & Mayer 2000), highlighting the need for more research before 501 

ICP guidelines can be fully developed. Similarly, there is limited information on the specific 502 

economic value and contribution of pollinator habitat and how to maximize that value. Planning tools 503 

for landowners on how to make decisions about the placement or protection of habitat or other 504 

http://www.projecticp.org/


19 

 

features that support managed and wild bees have been developed (e.g. http://www.xerces.org/wp-505 

content/uploads/2009/11/PollinatorHabitatAssessment.pdf). These tools are useful for educating 506 

landowners about ICP principles and farm planning, but they could be extended and refined from field 507 

testing and correlation with crop specific models.  508 

As improved ICP methods are further developed for stocking and managing bees as well as to 509 

develop habitat for wild and managed bees, outreach to the farm community will be a critical 510 

component to ICP adoption. Strategies for engaging landowners include demonstration farms, 511 

workshops, field courses, case studies, written guidelines, and the use of peer-to-peer networks. 512 

Support for outreach on ICP practices should target cooperative extension, certified crop advisors, 513 

grower groups, NGOs, state and federal agricultural agencies, and other agricultural experts.  514 

The USDA Natural Resources Conservation Service (NRCS) and Farm Service Agency 515 

(FSA) support extensive outreach on wild bee conservation efforts that support ICP practices 516 

(Vaughan & Skinner 2015). As mandated by the 2008 and 2014 Farm Bills, these agencies are 517 

incorporating pollinators into all of their conservation programs. While the level of support varies by 518 

region and over time, both agencies (in partnership with NGOs, such as the Xerces Society and Soil 519 

and Water Conservation Districts) are implementing programs through which growers can receive 520 

additional financial and technical support to adopt ICP practices nationwide. Engagement of the 521 

federal conservation agencies has the potential to significantly accelerate adoption of practices, and 522 

with the national U.S. goal of implementing 7 million acres of habitat to support wild bees and other 523 

pollinators by 2020 (Pollinator Health Task Force 2015) there is great potential to expand habitat to  524 

provide nectar, pollen, and nesting sites for wild bees.  525 

An important consideration beyond of the core concepts of the ICP framework is that many of 526 

the pollinator habitat and farm management practices designed to support wild or managed bees can 527 

provide additional environmental benefits. ICP strategies for enhancing wild bees may also support 528 

natural enemies, especially if plantings are designed with this in mind (Wratten et al. 2012).  Such a 529 

potential synergism provides added incentive for growers to consider adoption. Alternatively, the 530 

florally-rich habitat designed for pollinators could serve as a reservoir for pest insects, and more study 531 

of this risk is needed.  However, recent studies using perennial wildflower or shrub plantings found 532 

http://www.xerces.org/wp-content/uploads/2009/11/PollinatorHabitatAssessment.pdf
http://www.xerces.org/wp-content/uploads/2009/11/PollinatorHabitatAssessment.pdf
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greater biological control but no increase in pest insects within fields adjacent to pollinator habitat 533 

(Blaauw and Isaacs 2015, Morandin et al. 2016, Venturini et al. 2017). Broader benefits of pollinator 534 

habitats include buffers for erosion control, nutrient management, drift reduction, visual screens and 535 

barriers, and improved on-farm biodiversity (Hladik et al. 2017, Grudens-Shuck et al. 2017), which 536 

are increasingly important for certified U.S. organic farms. 537 

 538 

Integrating an economic understanding of pollinators to agriculture  539 

Economic assessments of pollination are tremendously useful for highlighting the value of wild bee 540 

abundance and diversity (e.g. Southwick and Southwick 1992, Losey & Vaughan 2006), but see 541 

Breeze et al. (2016) for limitations and future needs. Globally, the economic value of pollinators has 542 

been estimated to be roughly 10% of the value of agricultural production (Gallai et al. 2009). While 543 

these are important for understanding the contribution of pollinators to crop production, this is likely 544 

an underestimate because it only includes pollination leading directly to the human-consumed yield, 545 

omitting the value of seed production and livestock fodder. Additionally, values attributable to 546 

increases in quality may not be captured by mass-based production metrics (Garratt et al. 2014). For 547 

example, pollinator-dependent crops provide much of the vitamin A in regions of vitamin A 548 

deficiency (Chaplin-Kramer et al. 2014). Lastly, broad-scale valuations that are based on the crop 549 

plant's biology do not identify the contributions of different bee taxa to the value of pollination.  550 

Methods exist to separate the economic contributions of various insect taxa, although detailed 551 

field data are required (Winfree et al. 2011). In the context of ICP, it is essential to know the relative 552 

economic value from managed and unmanaged taxa. A synthesis of data from >600 crop fields 553 

worldwide found that roughly 50% of crop flower visits came from wild insects rather than those 554 

managed for pollination (Garibaldi et al. 2013). A significant economic value of wild bee taxa also 555 

occurs even in crop systems where managed honey bees are abundant (Garibaldi et al. 2013, Kleijn et 556 

al. 2015). Because these syntheses are based on data sets collected by researchers interested in 557 

unmanaged bees, this finding may overestimate the global contribution of these taxa for some 558 

contexts. Therefore, more studies are needed that measure the economic contributions of managed  559 
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and wild bee taxa using study locations that are stratified with respect to the geographical areas of 560 

main production for a given crop (see also Lautenbach et al. 2012).  561 

Only a few studies have documented application of ICP economic assessment based on a 562 

cost-benefit analysis of alternative actions; for example, restoration of habitat for crop-pollinating 563 

bees to augment managed honey bees (Carvalheiro et al. 2012, Blaauw & Isaacs 2014). The costs of 564 

habitat restoration or augmentation also include the opportunity costs associated with not using that 565 

land area for production, if the habitat takes land out of production. These opportunity costs can be 566 

larger than the benefits in some circumstances (Olschewski et al. 2006, Brittain et al in prep), but not 567 

in others. For example, in a Canadian oilseed production region, the purely economic optimum is to 568 

leave 30% of the land area as pollinator habitat (Morandin & Winston 2006). Ever more intensive 569 

agricultural land use has not increased the yields per hectare of pollinator-dependent crops over the 570 

past two decades, even though it has increased the production of crops not dependent on pollination 571 

(Deguines et al. 2014).   572 

With improved understanding of the economic value of managed and wild bees, we highlight 573 

the need to translate this into sampling tools that growers can use to make informed decisions on the 574 

need for adjusting managed or wild be populations during bloom. Growers or their crop scouts may 575 

conduct simple field samples of insect visitation to crop flowers, which can then be used to identify 576 

situations with insufficient pollination based on bee abundance. There is a strong link to IPM here too, 577 

and we highlight the need for the IPPM concept to be developed into practical decision tools that will 578 

support rapid research-based decisions about the need for adjusted stocking densities, investment in 579 

alternative managed bees, or implementation of conservation practices. 580 

 581 

Summary and future directions  582 

Development and implementation of ICP strategies for specialty crops will require attention to the 583 

following research and education priorities. First, it will be essential to know which insect species are 584 

economically valuable pollinators and what factors affect their abundance. Second, the relationships 585 

between bee abundance, pollen deposition, and crop yield must be studied to determine how much 586 

pollen deposition is needed for full yields. This is understood for some crops in some regions, but we 587 
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do not have a complete picture of these most basic aspects of crop pollination for most specialty 588 

crops, limiting recommendations for optimal honey bee stocking densities. It will also be important to 589 

know how well habitat management practices can support bees and improve crop pollination, and also 590 

to gain an improved understanding of where this approach is, and is not, economical for growers. 591 

Greater understanding in the agricultural community of how to manage these alternative bees will 592 

require better access to information through transfer of knowledge to beekeepers and growers 593 

comparable to the depth and breadth of information delivered about honey bees.  594 

Integrating training on wild and managed bees, and their application for crop pollination 595 

should be a priority for university biology entomology, and agricultural programs to help increase the 596 

ability of future research and extension educators to support implementation of sustainable pollination 597 

for specialty crops. In many agricultural regions, extension educators are in daily contact with 598 

beekeepers, growers, gardeners, and youth, developing and delivering education programs, and we 599 

would hope that the familiarity with ICP would rival that for IPM in the near future. The seeds of this 600 

change are being sown through increased attention to diversified crop pollination supported by 601 

funding agencies that are facilitating collaborative explorations between agricultural and ecological 602 

researchers studying pest management for crop potentiation and those focused on bees and crop 603 

pollination. Both issues are at the front of specialty crop growers’ concerns, and development of ICP 604 

cannot proceed without an understanding of the implications for pest management. The converse is 605 

also true, as pest management for diseases during crop bloom and invasive species have the potential 606 

to limit wild and managed bee performance and survival. 607 

On-farm demonstrations are also essential for facilitating stakeholder adoption. Therefore, we 608 

emphasize the value of working with leading growers to demonstrate ICP practices across the range of 609 

crop production situations for specialty crops. Social science analytical techniques also can be applied 610 

to identify and better understand the important motivations for stimulating the adoption of new 611 

pollination practices, which can help direct education efforts towards those with greatest chance of 612 

success. Finally, the spatial aspects of pollination services to crops must be considered for appropriate 613 

implementation across farm landscapes. This will be greatly facilitated by development of spatially-614 

explicit decision tools that combine biological and economic aspects of crop pollination. Aerial 615 
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images can be used to select crop areas of interest and then different bee species, placement strategies, 616 

densities, and habitat enhancements can be applied in various combinations to determine the expected 617 

relative profit of different strategies. Such systems will be needed to bring pollination decision-618 

making to the level of sophistication used currently in many farms for other production inputs. 619 
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Figures 1243 

 1244 

Fig. 1. Schematic representation of Integrated Crop Pollination and the components that contribute to 1245 

the development of an ICP strategy. ICP focuses on three general types of bees, supported by a 1246 

combination of restoration and agronomic practices. It employs economic assessment to inform 1247 

actions, combined with outreach support to deliver practical strategies to enhance sustainable 1248 

pollination for crops. 1249 

 1250 

Fig. 2.  Conceptual representation of the relative importance of different types of bees in different 1251 

farm settings. This depicts how habitat enhancements and alternative managed bees may be used to 1252 

increase the diversity of bees providing pollination services to crop production in intensive settings, 1253 

thereby mitigating potential pollination shortfalls if honey bees are unable to provide full pollination.  1254 

 1255 

 1256 

Fig. 3. Considerations for stepwise evaluation of plants for developing bee-enhancing pollinator 1257 

plantings for use in farms to support bees, and subsequent implementation of these plantings. Habitat 1258 

that is rewarding and well-established, and which has a benefit to yields of nearby crops can provide a 1259 

positive feedback to further adoption in other farm settings. 1260 
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